II – DEUXIEME PRINCIPE DE LA THERMODYNAMIQUE

Le 2^{éme} principe postule l'existence d'une variable extensive d'un système thermodynamique appelée **entropie** « **S** » dont les variations sont exprimées par:

$$\Delta S = S_f - S_i = \int \frac{\delta Q}{T} \geq 0$$

Remarque: Cas d'un système isolé

Pour une transformation cyclique « S » étant une fonction d'état,

- On à $\Delta S = \mathbf{0}$ c'est-à-dire que « \mathbf{S} » ne dépend pas du chemin suivie, mais elle dépend de l'état initiale et l'état finale.
- $\Delta S > 0$ \Rightarrow la transformation est dite irréversible.

II-1. Variation d'entropie dans les transformations réversibles

a) Changement d'état : Variation d'entropie avec la variation de phase

Par exemple, évaporation de 1 mole de H₂O à 100°C donc :

$$\Delta S = \int \frac{\delta Q}{T} = \frac{Q}{T} = \frac{\Delta H_{vap}}{T_{vap}} = \frac{L_{vap}}{T_{vap}}$$
 $cal/kou j/k ou$

b) Variation d'entropie avec la variation de pression à une température constante (T= cte)

$$A \xrightarrow{T= cte} B$$

$$\Delta S = \int \frac{\delta Q}{T}$$
 et on a $\Delta U = W + Q = n \times C_v \times \Delta T = 0$

$$\Rightarrow \Delta U = 0 \Rightarrow Q = -W \Rightarrow Q = \int P \, dV \Rightarrow \delta Q = P \, dV$$

$$\Delta S = \int \frac{\delta Q}{T} = \int \frac{PdV}{T}$$
 $P = \frac{nRT}{V}$

$$\Rightarrow \Delta S = \int \frac{nRT}{V} \frac{dV}{T} = \int nR \frac{1}{V} dV = nR \int \frac{1}{V} dV \qquad \Rightarrow \Delta S = nR \ln \frac{V_2}{V_1}$$

 c) Variation d'entropie avec la variation de température à une pression constante (P=cte)

$$\Delta S = \int \frac{\delta Q}{T} = \int n C_p \frac{dT}{T} \Rightarrow \Delta S = n C_p ln \frac{T_2}{T_1}$$

d) Variation d'entropie pour une transformation isochore (V=cte)

$$\Delta S = \int \frac{\delta Q}{T} = \int n C_V \frac{dT}{T} \Rightarrow \Delta S = n C_V ln \frac{T_2}{T_1}$$

II.2. Variation d'entropie dans les réactions chimiques

$$\Delta S_r^{\circ} = \sum n_i S^{\circ} (produits) - \sum n_i S^{\circ} (réactifs)$$

$$\Delta S^{\circ}$$
 (corps solides) = 0

II.3. Variation d'entropie dans les réactions chimiques avec la variation de la température T

$$\Delta S_r^{\circ} (T2) = \Delta S_r^{\circ} (T1) + \int_{T1}^{T2} \Delta n Cp \frac{dT}{T}$$

$$\Delta nCp = \sum nCp_{(produits)} - \sum nCp_{(r\'eactifs)}$$

II.4. L'énergie libre « F » et l'enthalpie libre « G »

A cause de la difficulté d'utiliser le 2éme principe de la thermodynamique c'est-à-dire, on ne peut pas calculer ΔS pour un système non isolé donc on a voulu préciser la spontanéité des réactions chimiques ou non spontanée c'est pour ça on à ajouter d'autre fonction d'état telle que « F » et « G »

$$F = U - T \times S \Longrightarrow \Delta F = \Delta U - T \times \Delta S \le 0$$

$$G = H - T \times S \Longrightarrow \Delta G = \Delta H - T \times \Delta S \le 0$$

- Si $\Delta G < 0 \Rightarrow$ la transformation est irréversible \Rightarrow la transformation est spontanée.
- Si $\Delta G = 0 \implies$ la transformation est réversible.
- Si $\Delta G > 0 \implies$ la transformation est impossible.

II.5. Variation d'enthalpie libre « ΔG » dans les réactions chimiques

$$\Delta G_r^{\circ} = \sum n_i \, \Delta G_f^{\circ} \, (produits) - \sum n_j \, \Delta G_f^{\circ} \, (réactifs)$$

$$\Delta G_f^{\circ}(corps simples) = 0$$

Résumé du 1^{er} et 2^{éme} principe de la thermodynamique

	W	Q	$\Delta oldsymbol{U}$	ΔH	ΔS
Isobare	$-P(V_f - V_i)$	$nC_p(T_f$	$nC_{\rm tr}(T_{\rm c}-T_{\rm c})$	$nC_{c}(T_{c}-T_{i})$	$n \in In \frac{T_2}{T_2}$
(P=cte)	1 (1)	$-T_i$)	nov (1 11)	$nC_p(T_f-T_i)$	$\frac{n C_p m}{T_1}$
Isochore	0	$nC_V(T_f - T_i)$	$nC_{V}(T_{\epsilon}-T_{\epsilon})$	$nC_p(T_f-T_i)$	$n C \ln \frac{T_2}{T_2}$
(V= cte)	V	$-T_i$)	πο _γ (1 _j - 1 _{l)}	nop(1)	T_1
Isotherme	$-nRTln\frac{V_f}{V_c}$	$+nRTln\frac{V_f}{V_c}$	0	0	$nR ln \frac{V_2}{V_1}$
(T = cte)	V_i	V_i	V	V	V_1
Adiabatique	$\frac{P_f V_f - P_i V_i}{\gamma - 1}$	0	$nC_V(T_f-T_i)$	$nC_p(T_f-T_i)$	0

Dr: KAABI Ilhem.