Université Ferhat Abbas, Sétif 1

1^{ére}Année Aménagement

Mathématique I = 2020/2021

Série d'exercices 02

Exercice 01:

On considere dans l'éspace véctoriel \mathbb{R}^2 les vecteurs : $t_1 = (1, 2), t_2 = (-1, 0).$

• Montrer que la famille des vecteurs $\{t_1, t_2\}$ forme une base de \mathbb{R}^2 .

On considère dans l'éspace véctoriel \mathbb{R}^3 les vecteurs : $v_1 = (0, 1, 1), v_2 = (1, 0, 1), v_3 = (1, 1, 0).$

• Montrer que la famille des vecteurs $\{v_1, v_2, v_3\}$ forme une base de \mathbb{R}^3 .

On considère dans l'éspace véctoriel \mathbb{R}^3 les vecteurs : $u_1=(1,1,1),\ u_2=(-1,1,0),\ u_3=(1,0,-1).$

• Montrer que la famille des vecteurs $\{u_1, u_2, u_3\}$ forme une base de \mathbb{R}^3 .

Exercice 02:

Dans L'espace vectoriel \mathbb{R}^3 , on considère le sous espace vectoriel

$$F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2x_1 - x_2 + 3x_3 = 0\}$$

 \bullet Déterminer une base de F puis donner sa dimension.

Exercice 03:

Dans L'espace vectoriel \mathbb{R}^4 on considère le sous espace vectoriel

$$F = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 + x_2 + x_3 + x_4 = 0\}$$

 \bullet Déterminer une base de F puis donner sa dimension .

Exercice 04:

Les applications suivantes sont elles linéaires?

Exercice 05:

Soit l'application $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par f(x, y, z) = (y + z, x + y + z, x).

- 1. Montrer que f est une application linéaire.
- 2. Déterminer $\ker f$ (le noyau) et $\operatorname{Im} f$.

Exercice 06:

Soit l'application $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définie par f(x, y, z) = (-2x + y + z, x - 2y + z).

- 1. Montrer que f est une application linéaire.
- 2. Déterminer $\ker f$ et $\operatorname{Im} f$.
- 3. Donner une base de ker f et Im f.