Série d'exercice N°01

Rappels mathématiques

EXERCICES ET SOLUTIONS

Exercice 01:

Deux points A et B, ont pour coordonnées cartésiennes dans l'espace : A(2,3,-3), B(5,7,2)

Déterminer les composantes du vecteur $\stackrel{-\rightarrow}{AB}$ ainsi que son module, sa direction et son sens.

Le vecteur \overrightarrow{AB} est donné par : $\overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OA} = 3 \overrightarrow{i} + 4 \overrightarrow{i} + 5 \overrightarrow{i}$

Son module: $AB = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50}$

Sa direction est déterminée par les angles (α, β, θ) qu'il fait avec chacun des axes du repère.

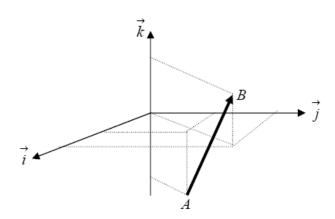
Ses angles se déduisent par le produit scalaire du vecteur $\stackrel{-\rightarrow}{AB}$ par les vecteurs unitaires du repère orthonormé :

$$\alpha = (\overrightarrow{AB}, \overrightarrow{i}) : \overrightarrow{AB} \bullet \overrightarrow{i} = AB.1.\cos\alpha \iff \cos\alpha = \frac{\overrightarrow{AB} \bullet \overrightarrow{i}}{AB} = \frac{3}{\sqrt{50}} = 0.424 \implies \alpha = 64.89^{\circ}$$

$$\beta = (\overrightarrow{AB}, \overrightarrow{j}) : \overrightarrow{AB} \bullet \overrightarrow{j} = AB.1.\cos\beta \iff \cos\beta = \frac{\overrightarrow{AB} \bullet \overrightarrow{j}}{AB} = \frac{4}{\sqrt{50}} = 0.565 \implies \beta = 55.54^{\circ}$$

$$\theta = (\overrightarrow{AB}, \overrightarrow{k}) : \overrightarrow{AB} \bullet \overrightarrow{k} = AB.1.\cos\theta \iff \cos\theta = \frac{\overrightarrow{AB} \bullet \overrightarrow{k}}{AB} = \frac{5}{\sqrt{50}} = 0.707 \implies \theta = 44.99^{\circ}$$

son sens: comme le produit scalaire du vecteur \overrightarrow{AB} avec les trois vecteurs unitaires est positif alors, il a un sens positif suivant les trois axes du repère.



Série d'exercice N°01

Rappels mathématiques

Exercice 02:

La résultante de deux forces $\vec{F_1}$ et $\vec{F_2}$ est égale à 50 N et fait un angle de 30° avec la force $\vec{F_1} = 15N$. Trouver le module de la force $\vec{F_2}$ et l'angle entre les deux forces.

Solution:

 $R = 50 \, N$; $V_1 = 15 \, N$; $\alpha = 30^{\circ}$, n ous avons: $\overrightarrow{R} = \overrightarrow{F_1} + \overrightarrow{F_2}$ Dans le triangle rectangle: ACD rectangle en D, nous avons: $AC^2 = AD^2 + DC^2$ $AD = AB + BD = F_1 + F_2 \cos \theta$ $DC = F_2 \sin \theta$

On obtient alors: $R^2 = (F_1 + F_2 \cos \theta)^2 + (F_2 \sin \theta)^2 = F_1^2 + F_2^2 + 2F_1F_2 \cos \theta$

$$R^2 = F_1^2 + F_2^2 + 2F_1F_2\cos\theta$$
 (1)

Nous avons aussi : $\sin \alpha = \frac{CD}{R} \implies CD = R \sin \alpha \\
\sin \theta = \frac{CD}{F_2} \implies CD = F_2 \sin \theta$ $\Rightarrow R \sin \alpha = F_2 \sin \theta$ (2)

et
$$\cos \alpha = \frac{AD}{R} = \frac{F_1 + F_2 \cos \theta}{R} \implies \cos \theta = \frac{R \cos \alpha - F_1}{F_2}$$
 (3)

en remplaçant l'expression (3) dans (1), on aboutit à :

$$R^{2} = F_{1}^{2} + F_{2}^{2} + 2F_{1}F_{2}\left(\frac{R\cos\alpha - F_{1}}{F_{2}}\right) = F_{1}^{2} + F_{2}^{2} + 2F_{1}(R\cos\alpha - F_{1})$$

d'où:
$$F_2 = \sqrt{R^2 - F_1^2 - 2F_1(R\cos\alpha - F_1)}$$

$$F_2 = \sqrt{50^2 - 15^2 - 2x15(50\cos 30^\circ - 15)} = 44,44N$$

L'expression (3) nous donne :
$$\cos \theta = \frac{50 \cos 30 - 15}{50} = 0,566 \implies \theta = 55,528^{\circ}$$

Série d'exercice N°01

Rappels mathématiques

Exercice 03:

COURS RDM1

Soient les vecteurs suivants : $\vec{U_1} = \vec{A_1} + \vec{i} + \vec{A_2} + \vec{j} + \vec{A_3} + \vec{k}$ et $\vec{U_2} = \vec{B_1} + \vec{i} + \vec{B_2} + \vec{j} + \vec{B_3} + \vec{k}$

- 1) Calculer les produits scalaires : $\vec{U_1} \cdot \vec{U_2}$, $\vec{U_1} \cdot \vec{U_1}$, $\vec{U_2} \cdot \vec{U_2}$,

 On donne : $\vec{V_1} = 2\vec{i} \vec{j} + 5\vec{k}$, $\vec{V_2} = -3\vec{i} + 1, 5\vec{j} 7.5\vec{k}$, $\vec{V_3} = -5\vec{i} + 4\vec{j} + \vec{k}$
- 2) Calculer $\overrightarrow{V_1} \cdot \overrightarrow{V_2}$ et $\overrightarrow{V_1} \wedge \overrightarrow{V_2}$;
- 3) Sans faire de représentation graphique que peut-on dire du sens et de la direction du vecteur \overrightarrow{V}_2 par rapport à \overrightarrow{V}_1 ;
- 4) Calculer les produits suivants $\vec{V}_1 \cdot (\vec{V}_2 \wedge \vec{V}_3)$ et $\vec{V}_1 \wedge (\vec{V}_2 \wedge \vec{V}_3)$;
- 5) Déterminer la surface du triangle formé par les vecteurs \overrightarrow{V}_2 et \overrightarrow{V}_3

Solution:

2)
$$\vec{V_1} \cdot \vec{V_2} = -6 - 1.5 - 37.5 = -45$$

$$\vec{V_1} \wedge \vec{V_2} = \begin{cases} 2 \\ -1.5 \wedge \begin{cases} -3 \\ 1.5 \\ -7.5 \end{cases} = \begin{cases} 7.5 - 7.5 \\ -1.5 + 1.5 = \begin{cases} 0 \\ 0 \\ 3 - 3 \end{cases} \end{cases}$$

3) Comme le produit vectoriel des deux vecteurs est nul, alors ils sont parallèles

$$\vec{V_1} \wedge \vec{V_2} = \vec{0} \quad \Rightarrow \quad \vec{V_1} \ / / \ \vec{V_2}$$

De plus leur produit scalaire est négatif $\vec{V_1} \cdot \vec{V_2} = -45$, alors les vecteurs $\vec{V_1}$ et $\vec{V_2}$ sont parallèles et de sens opposés

4)
$$\vec{V_1} \cdot (\vec{V_2} \wedge \vec{V_3}) = \begin{cases} 2 \\ -1 \bullet \\ 5 \end{cases} \begin{pmatrix} -3 \\ 1.5 \\ -7.5 \end{pmatrix} \begin{pmatrix} -5 \\ 4 \\ 1 \end{pmatrix} = \begin{cases} 2 \\ -1 \bullet \\ 5 \end{cases} \begin{pmatrix} 31.5 \\ 40.5 = 63 - 40.5 - 22.5 = 0 \\ -4.5 \end{cases}$$

on peut retrouver ce résultat par la méthode vectorielle :

Nous avons
$$\vec{V}_1 /\!/ \vec{V}_2$$
 soit $\vec{W} = \vec{V}_2 \wedge \vec{V}_3 \Leftrightarrow \begin{cases} \vec{V}_2 \perp \vec{W} \\ \vec{V}_3 \perp \vec{W} \end{cases}$, calculons $\vec{V}_1 \cdot \vec{W}$

Série d'exercice N°01

Rappels mathématiques

$$\vec{V}_{2} \perp \vec{W} \text{ et } \vec{V}_{1} // \vec{V}_{2} \implies \vec{V}_{1} \perp \vec{W} \iff \vec{V}_{1} \cdot \vec{W} = 0$$

$$\vec{V}_{1} \wedge (\vec{V}_{2} \wedge \vec{V}_{3}) = \begin{cases} 2 \\ -1 \wedge \\ 5 \end{cases} \left\{ \begin{cases} -3 \\ 1.5 \\ -7.5 \end{cases} \left\{ \begin{cases} -5 \\ 4 \\ 1 \end{cases} \right\} = \begin{cases} 2 \\ -1 \wedge \\ 5 \end{cases} \left\{ \begin{cases} 31.5 \\ 40.5 \\ -4.5 \end{cases} \left\{ \begin{cases} 166.5 \\ 112.5 \end{cases} \right\} \right\}$$

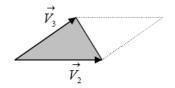
$$\vec{V}_1 \wedge (\vec{V}_2 \wedge \vec{V}_3) = -198 \vec{i} + 166 \vec{j} + 112,5 \vec{k}$$

5) La surface du triangle formé par les vecteurs $\vec{V_2}$ et $\vec{V_3}$ est donnée par la moitié du module du produit vectoriel des deux vecteurs :

Nous avons : $\overrightarrow{V}_2 \wedge \overrightarrow{V}_3 = 31.5 \overrightarrow{i} + 40.5 \overrightarrow{j} - 4.5 \overrightarrow{k}$ alors :

$$\begin{vmatrix} \vec{V_2} \wedge \vec{V_3} \end{vmatrix} = \sqrt{31.5^2 + 40.5^2 + (-4.5)^2} = 51.50$$

$$S = \frac{\begin{vmatrix} \vec{V_2} \wedge \vec{V_3} \end{vmatrix}}{2} = \frac{51.50}{2} = 25.75$$



c'est la demi surface du parallélogramme :

Exercice 04:

Soient les vecteurs :

$$\vec{U} = 2\vec{i} + 6\vec{k}$$
, $\vec{V} = 8\vec{i} + \vec{v} + 2\vec{k}$, $\vec{P} = 3\vec{i} - 4\vec{i} + 2\vec{k}$, $\vec{O} = -2\vec{i} + \vec{v} + 12\vec{k}$

- 1) Déterminer y et z pour que les vecteurs \overrightarrow{U} et \overrightarrow{V} soient colinéaires ;
- 2) Déterminer la valeur de y pour que les vecteurs \overrightarrow{P} et \overrightarrow{Q} soient perpendiculaires;

Solution:

1) Si
$$\vec{U}$$
 et \vec{V} sont colinéaires alors: $\vec{U} \wedge \vec{V} = \vec{0} \Leftrightarrow \begin{cases} 2 \\ 0 \wedge \begin{cases} 8 \\ y = \begin{cases} -6y \\ -2z + 48 = \\ 0 \end{cases} \Rightarrow \begin{cases} y = 0 \\ z = 24 \end{cases}$

2) Si \overrightarrow{P} et \overrightarrow{Q} sont perpendiculaires alors : $\overrightarrow{P} \cdot \overrightarrow{Q} = 0$

$$\vec{P} \cdot \vec{Q} = 0 \iff \begin{cases} 3 \\ -4 \cdot \begin{cases} -2 \\ y \\ 12 \end{cases} = 0 \iff -6 - 4y + 24 = 0 \quad y = \frac{9}{2} \end{cases}$$

Série d'exercice N°01

Rappels mathématiques

Exercice 05:

Trouvez le volume d'un parallélépipède dont les cotés sont les vecteurs : \overrightarrow{U} , \overrightarrow{P} , \overrightarrow{Q} , tel que :

$$\vec{U} = 2\vec{i} + 6\vec{j}$$
, $\vec{P} = 3\vec{j} + 5\vec{k}$, $\vec{Q} = \vec{i} + 4\vec{j} - 2\vec{k}$,

Solution:

Le volume d'un parallélépipède est un scalaire positif. On doit utiliser une opération vectorielle dont le résultat est un scalaire positif : c'est le module du produit mixte des trois

vecteurs :
$$v = \begin{vmatrix} \overrightarrow{U} \cdot (\overrightarrow{P} \wedge \overrightarrow{Q}) \end{vmatrix}$$

$$\vec{U} \cdot (\vec{P} \wedge \vec{Q}) = \begin{cases} 2 \\ 6 \\ 0 \end{cases} = \begin{cases} 2 \\ 6 \\ 5 \end{cases} = \begin{cases} 2 \\ 4 \\ -2 \end{cases} = \begin{cases} 2 \\ 6 \\ 5 \end{cases} = -52 + 30 = -22 ; \implies 0$$

$$v = \left| \overrightarrow{U} \cdot (\overrightarrow{P} \wedge \overrightarrow{Q}) \right| = \left| -22 \right| = 22$$

Exercice 06:

La trajectoire d'un mobile dans un repère orthonormé directe $R(O,\vec{i},\vec{j},\vec{k})$ est donnée par les équations paramétriques suivantes : $x=4t^2$, $y=4(t-\frac{t^3}{3})$, $z=3t+t^3$

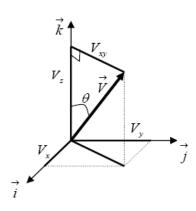
Montrer que le vecteur vitesse \overrightarrow{V} fait un angle constant avec l'axe oz. Quelle est la valeur de cet angle.

Solution:

La vitesse du mobile est donnée par :
$$\vec{V} = \begin{cases} V_x = 8t \\ V_y = 4(1-t^2) \\ V_z = 3(1+t^2) \end{cases}$$

Nous avons en effet:

$$tg\theta = \frac{V_{xy}}{V_z} = \frac{\sqrt{V_x^2 + V_y^2}}{V_z}$$
$$tg\theta = \frac{\sqrt{64t^2 + 16(1 - t^2)^2}}{3(1 + t^2)} = \frac{\sqrt{64t^2 + 16t^4 - 32t^2 + 16}}{3(1 + t^2)}$$



Série d'exercice N°01

Rappels mathématiques

$$tg\theta = \frac{\sqrt{16(t^2 + 2t^2 + 1)}}{3(1 + t^2)} = \frac{\sqrt{16(1 + t^2)^2}}{3(1 + t^2)} = \frac{4(1 + t^2)}{3(1 + t^2)} = \frac{4}{3}$$

 $tg\theta = \frac{4}{3}$ \Rightarrow $\theta = 53,13^{\circ}$ la valeur de l'angle est bien constante.

Exercice 07:

La ligne d'action d'une force \vec{F} de $800\,N$, passe par les points $A \begin{cases} 1,22 & 0 \\ 0 & \text{et } B \end{cases} \begin{cases} 0 \\ 1,22 \\ 0,61 \end{cases}$ dans un repère orthonormé. Déterminer les composantes de cette force

Solution:

Nous avons : $\overrightarrow{AB} = AB \overrightarrow{u}_{AB} \implies \overrightarrow{u}_{AB} = \frac{\overrightarrow{AB}}{AB}$ vecteur unitaire porté par la ligne d'action.

$$\vec{u}_{AB} = \frac{\vec{AB}}{AB} = \frac{-1,22\vec{i}+1,22\vec{j}-2,13\vec{k}}{\sqrt{(-1,22)^2+(1,22)^2+(-2,13)^2}} = \frac{-1,22\vec{i}+1,22\vec{j}-2,13\vec{k}}{2,74}$$

$$\vec{u}_{AB} = -0.445 \vec{i} + 0.445 \vec{j} - 0.777 \vec{k}$$

La force \overrightarrow{F} s'écrira :

$$\vec{F} = F \vec{u}_{4R} = 800(-0.445 \vec{i} + 0.445 \vec{j} - 0.777 \vec{k}) = -356 \vec{i} + 356 \vec{j} - 621.6 \vec{k})$$

Les composantes de la force sont ainsi connues suivant les trois axes du repère.

Exercice 08:

Soit un repère orthonormé direct $R(O, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ dans l'espace vectoriel Euclidien R^3 à trois dimensions dans le corps des nombres réels. Soit un axe $\Delta(O, \overrightarrow{u})$ passant par le point O et de

vecteur unitaire
$$\vec{u}$$
 tel que : $\vec{u} = \begin{cases} u_1 \\ u_2 \\ u_3 \end{cases}$, et un vecteur quelconque $\vec{V} = \begin{cases} V_1 \\ V_2 \\ V_3 \end{cases}$

Série d'exercice N°01

Rappels mathématiques

On note π_u un plan orthogonal à l'axe $\Delta(O, u)$

- 1) Calculer les produits scalaires suivants : $\vec{u} \cdot \vec{u}$, $\vec{V} \cdot \vec{V}$, $\vec{u} \cdot \vec{V}$;
- 2) Déterminer les composantes du vecteur $\overrightarrow{W} = \overrightarrow{u} \wedge \overrightarrow{V}$ dans le repère $R(O, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$; E déduire dans cette base la matrice représentant l'opérateur produit vectoriel noté $\overrightarrow{u} \wedge = [*u]$;
- 3) Trouver l'expression du vecteur \overrightarrow{V}_u : projection orthogonale du vecteur \overrightarrow{V} sur l'ax $\Delta(O, \overrightarrow{u})$; En déduire la matrice $[u_P]$ représentant l'opérateur projection orthogonale su l'axe $\Delta(O, \overrightarrow{u})$;
- 4) Trouver l'expression du vecteur ν_π : projection orthogonale du vecteur ν sur le pla π_u; En déduire la matrice [u_π] représentant l'opérateur projection orthogonale sur sur l plan π_u;
- 5) Déterminer l'expression de la distance d d'un point $P \begin{cases} x \\ y & \text{à l'axe } \Delta(O, \vec{u}) \end{cases}$; En déduir R

l'expression matricielle représentant la distance au carrée : d^2 dans le repère R.

Solution:

Calcul des produits scalaires :

$$\overrightarrow{u} \cdot \overrightarrow{u} = u_1^2 + u_2^2 + u_3^2 \ , \quad \overrightarrow{V} \cdot \overrightarrow{V} = V_1^2 + V_2^2 + V_3^2 \quad , \quad \overrightarrow{u} \cdot \overrightarrow{V} = u_1 V_1 + u_2 V_2 + u_3 V_3$$

2) $\overrightarrow{W} = \overrightarrow{u} \wedge \overrightarrow{V}$ dans le repère $R(O, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$

$$\overrightarrow{W} = \overrightarrow{u} \wedge \overrightarrow{V} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \wedge \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} u_2 V_3 - u_3 V_2 \\ u_3 V_1 - u_1 V_3 \\ u_1 V_2 - u_2 V_1 \end{pmatrix} \text{, sous forme matricialle 1'expression s'écrira}:$$

$$\overrightarrow{W} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} \quad \Leftrightarrow \quad \overrightarrow{W} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \overrightarrow{V}$$

Série d'exercice N°01

Rappels mathématiques

 $\overrightarrow{W} = \begin{bmatrix} *u \end{bmatrix} \overrightarrow{V} \quad \text{avec} : \begin{bmatrix} *u \end{bmatrix} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \quad \text{opérateur produit vectoriel}.$

3) Expression du vecteur \overrightarrow{V}_u , projection de \overrightarrow{V} sur l'axe $\Delta(O, \overrightarrow{u})$ dans R

Nous avons : $\overrightarrow{V}_u = (\overrightarrow{V} \cdot \overrightarrow{u})\overrightarrow{u}$

$$\begin{split} \overrightarrow{V_{u}} &= \left(\overrightarrow{V} \cdot \overrightarrow{u}\right) \overrightarrow{u} = \left(u_{1}V_{1} + u_{2}V_{2} + u_{3}V_{3}\right) \overrightarrow{u} = \left(u_{1}V_{1} + u_{2}V_{2} + u_{3}V_{3}\right) \left(u_{1} \overrightarrow{e_{1}} + u_{2} \overrightarrow{e_{2}} + u_{3} \overrightarrow{e_{3}}\right) \\ &= \left(u_{1}^{2}V_{1} + u_{1}u_{2}V_{2} + u_{1}u_{3}V_{3}\right) \overrightarrow{e_{1}} + \left(u_{1}u_{2}V_{1} + u_{2}^{2}V_{2} + u_{2}u_{3}V_{3}\right) \overrightarrow{e_{2}} + \left(u_{1}u_{3}V_{1} + u_{2}u_{3}V_{2} + u_{3}^{2}V_{3}\right) \overrightarrow{e_{3}} \\ &= \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} \left(u_{1} \quad u_{2} \quad u_{3}\right) \overrightarrow{V} = \begin{bmatrix} u \end{bmatrix} \begin{bmatrix} u^{T} \end{bmatrix} \overrightarrow{V} \end{split}$$

Nous avons donc: $[u_p] = [u][u^T] = \begin{pmatrix} u_1 \\ u_2 \\ u_2 \end{pmatrix} (u_1 \quad u_2 \quad u_3) = \begin{bmatrix} u_1^2 & u_1u_2 & u_1u_3 \\ u_1u_2 & u_2^2 & u_2u_3 \\ u_1u_3 & u_2u_3 & u_3^2 \end{bmatrix}$

4) Expression du vecteur \overrightarrow{V}_{π} , projection de \overrightarrow{V} sur le plan (π) orthogonal à \overrightarrow{u}

Le vecteur \overrightarrow{V} a deux composantes, l'une perpendiculaire au plan elle est portée par l'axe (Δ) et l'autre dans le plan (π) .

Nous avons alors : $\overrightarrow{V} = \overrightarrow{V}_u + \overrightarrow{V}_{\pi} = (\overrightarrow{V} \cdot \overrightarrow{u})\overrightarrow{u} + \overrightarrow{V}_{\pi}$

 $\overrightarrow{V}_{\pi} = \overrightarrow{V} - (\overrightarrow{V} \cdot \overrightarrow{u}) \overrightarrow{u} = (\overrightarrow{u} \cdot \overrightarrow{u}) \overrightarrow{V} - (\overrightarrow{V} \cdot \overrightarrow{u}) \overrightarrow{u}$, on retrouve la forme du double produit

vectoriel d'où : $\vec{V}_{\pi} = \vec{u} \wedge \left(\vec{V} \wedge \vec{u} \right)$. Le produit vectoriel est anticommutatif, alors :

$$\overrightarrow{V} \wedge \overrightarrow{u} = -\overrightarrow{u} \wedge \overrightarrow{V} = -[*u]\overrightarrow{V} \text{ , ce qui donne : } \overrightarrow{V}_{\pi} = [*u] \left\{ -[*u]\overrightarrow{V} \right\}$$

mais nous savons que : $[*u]^T = -[*u]$ on a finalement :

$$\overrightarrow{V}_{\pi} = \left[*u \right] \left\{ \left[*u \right]^{T} \overrightarrow{V} \right\} = \left\{ \left[*u \right] \left[*u \right]^{T} \right\} \overrightarrow{V} = \left[u_{P} \right] \overrightarrow{V}$$

Série d'exercice N°01

Rappels mathématiques

avec $[u_p] = [*u][*u]^T$

Développons cette expression :

$$\begin{bmatrix} u_P \end{bmatrix} = \begin{bmatrix} *u \end{bmatrix} = \begin{bmatrix} *u \end{bmatrix} \begin{bmatrix}$$

sachant que : $u_1^2 + u_2^2 + u_3^2 = 1$ alors : $u_2^2 + u_3^2 = 1 - u_1^2$, $u_1^2 + u_3^2 = 1 - u_2^2$, $u_1^2 + u_2^2 = 1 - u_3^2$

La matrice $[u_p]$ s'écrira :

$$\begin{bmatrix} u_P \end{bmatrix} = \begin{bmatrix} 1 - u_1^2 & -u_1 u_2 & -u_1 u_3 \\ -u_1 u_2 & 1 - u_2^2 & -u_2 u_3 \\ -u_1 u_3 & -u_2 u_3 & 1 - u_3^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} u_1^2 & -u_1 u_2 & -u_1 u_3 \\ -u_1 u_2 & u_2^2 & -u_2 u_3 \\ -u_1 u_3 & -u_2 u_3 & u_3^2 \end{bmatrix}$$

$$\left[u_{p}\right] = \left[1\right] - \left[u\right]\left[u\right]^{T}$$

or nous avons $[u_p] = [*u][*u]^T$ $\Rightarrow [*u][*u]^T = [1] - [u][u]^T$

finalement: $[*u][*u]^T + [u][u]^T = [1]$

5) Expression de la distance d du point P à l'axe $\Delta(O, u)$

$$d = ||\overrightarrow{HP}||$$

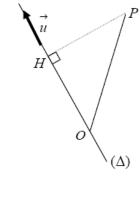
Calculons le produit vectoriel : $\overrightarrow{OP} \land \overrightarrow{u}$

Le vecteur \overrightarrow{OP} a pour composantes : $\overrightarrow{OP} = \overrightarrow{r} = \begin{cases} x \\ y \\ z \end{cases}$

$$\stackrel{-\rightarrow}{OP} \wedge \stackrel{\rightarrow}{u} = \left(\stackrel{-\rightarrow}{OH} + \stackrel{-\rightarrow}{HP} \right) \wedge \stackrel{\rightarrow}{u} = \stackrel{-\rightarrow}{HP} \wedge \stackrel{\rightarrow}{u}$$

$$\left\| \overrightarrow{HP} \wedge \overrightarrow{u} \right\| = \left\| \overrightarrow{HP} \right\| \left\| \overrightarrow{u} \right\| \sin 90^{\circ} = \left\| \overrightarrow{HP} \right\| = d$$

nous avons alors:



 $d^2 = (\overrightarrow{OP} \wedge \overrightarrow{u}) \cdot (\overrightarrow{OP} \wedge \overrightarrow{u})$ nous allons utiliser la règle du produit mixte afin de développer cette expression.

Série d'exercice N°01

Rappels mathématiques

$$d^{2} = (\overrightarrow{OP} \wedge \overrightarrow{u}) \cdot (\overrightarrow{OP} \wedge \overrightarrow{u}) = (\overrightarrow{OP} \wedge \overrightarrow{u}, \overrightarrow{OP}, \overrightarrow{u}) = (\overrightarrow{u}, \overrightarrow{OP} \wedge \overrightarrow{u}, \overrightarrow{OP})$$

$$= (\overrightarrow{u}, \overrightarrow{OP}, \overrightarrow{u} \wedge \overrightarrow{OP}) = \overrightarrow{u} \cdot (\overrightarrow{OP} \wedge (\overrightarrow{u} \wedge \overrightarrow{OP})) \text{ qui s'écrit sous forme :}$$

$$d^{2} = \overrightarrow{u} \cdot \overrightarrow{V} \quad \text{avec} \quad \overrightarrow{V} = (\overrightarrow{OP} \wedge (\overrightarrow{u} \wedge \overrightarrow{OP}))$$

D'après ce que l'on a vu précédemment, nous pouvons écrire :

$$\begin{bmatrix} *\overrightarrow{r} \end{bmatrix} = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

$$d^{2} = \overrightarrow{u} \cdot \left(\overrightarrow{OP} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OP} \right) \right) = \overrightarrow{u} \cdot \left(\overrightarrow{OP} \wedge \left(-\overrightarrow{OP} \wedge \overrightarrow{u} \right) \right) = \overrightarrow{u} \cdot (\overrightarrow{r} \wedge (-\overrightarrow{r} \wedge \overrightarrow{u})) = \begin{bmatrix} \overrightarrow{u} \end{bmatrix}^{T} ([*r][-*r]) [\overrightarrow{u}]$$
or nous avons $[-*r] = [*r]^{T}$

$$d^{2} = \begin{bmatrix} \overrightarrow{u} \end{bmatrix}^{T} (\llbracket *r \rrbracket \llbracket *r \rrbracket^{T} \begin{bmatrix} \overrightarrow{u} \end{bmatrix} = \begin{bmatrix} \overrightarrow{u} \end{bmatrix}^{T} [I_{o} \llbracket \overrightarrow{u} \end{bmatrix} \text{ avec } (\llbracket *r \rrbracket \llbracket *r \rrbracket^{T}) = [I_{o}]$$

$$[I_o] = \begin{bmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{bmatrix}$$

en faisant intervenir la masse du solide, nous obtenons une matrice de la forme :

$$[J_0] = \begin{bmatrix} \int_S (y^2 + z^2) dm & -\int_S xy dm & -\int_S xz dm \\ -\int_S xy dm & \int_S (x^2 + z^2) dm & -\int_S yz dm \\ -\int_S xz dm & -\int_S yz dm & \int_S (x^2 + y^2) dm \end{bmatrix}$$

qui est une matrice très particulière que l'on retrouvera dans les chapitres sur la cinétique et la dynamique des solides.

Elle est appelée matrice d'inertie du solide.